LogoLogo
LogoLogo
  • The Barbara K. Ostrom (1978) Bioinformatics and Computing Facility
  • Computing Resources
    • Active Data Storage
    • Archive Data Storage
    • Luria Cluster
      • FAQs
    • Other Resources
  • Bioinformatics Topics
    • Tools - A Basic Bioinformatics Toolkit
      • Getting more out of Microsoft Excel
      • Bioinformatics Applications of Unix
        • Unix commands applied to bioinformatics
        • Manipulate NGS files using UNIX commands
        • Manipulate alignment files using UNIX commands
      • Alignments and Mappers
      • Relational databases
        • Running Joins on Galaxy
      • Spotfire
    • Tasks - Bioinformatics Methods
      • UCSC Genome Bioinformatics
        • Interacting with the UCSC Genome Browser
        • Obtaining DNA sequence from the UCSC Database
        • Obtaining genomic data from the UCSC database using table browser queries
        • Filtering table browser queries
        • Performing a BLAT search
        • Creating Custom Tracks
        • UCSC Intersection Queries
        • Viewing cross-species alignments
        • Galaxy
          • Intro to Galaxy
          • Galaxy NGS Illumina QC
          • Galaxy NGS Illumina SE Mapping
          • Galaxy SNP Interval Data
        • Editing and annotation gene structures with Argo
      • GeneGO MetaCore
        • GeneGo Introduction
        • Loading Data Into GeneGO
        • Data Management in GeneGO
        • Setting Thresholds and Background Sets
        • Search And Browse Content Tab
        • Workflows and Reports Tab
        • One-click Analysis Tab
        • Building Network for Your Experimental Data
      • Functional Annotation of Gene Lists
      • Multiple Sequence Alignment
        • Clustalw2
      • Phylogenetic analysis
        • Neighbor Joining method in Phylip
      • Microarray data processing with R/Bioconductor
    • Running Jupyter notebooks on luria cluster nodes
  • Data Management
    • Globus
  • Mini Courses
    • Schedule
      • Previous Teaching
    • Introduction to Unix and KI Computational Resources
      • Basic Unix
        • Why Unix?
        • The Unix Tree
        • The Unix Terminal and Shell
        • Anatomy of a Unix Command
        • Basic Unix Commands
        • Output Redirection and Piping
        • Manual Pages
        • Access Rights
        • Unix Text Editors
          • nano
          • vi / vim
          • emacs
        • Shell Scripts
      • Software Installation
        • Module
        • Conda Environment
      • Slurm
    • Introduction to Unix
      • Why Unix?
      • The Unix Filesystem
        • The Unix Tree
        • Network Filesystems
      • The Unix Shell
        • About the Unix Shell
        • Unix Shell Manual Pages
        • Using the Unix Shell
          • Viewing the Unix Tree
          • Traversing the Unix Tree
          • Editing the Unix Tree
          • Searching the Unix Tree
      • Files
        • Viewing File Contents
        • Creating and Editing Files
        • Manipulating Files
        • Symbolic Links
        • File Ownership
          • How Unix File Ownership Works
          • Change File Ownership and Permissions
        • File Transfer (in-progress)
        • File Storage and Compression
      • Getting System Information
      • Writing Scripts
      • Schedule Scripts Using Crontab
    • Advanced Utilization of IGB Computational Resources
      • High Performance Computing Clusters
      • Slurm
        • Checking the Status of Computing Nodes
        • Submitting Jobs / Slurm Scripts
        • Interactive Sessions
      • Package Management
        • The System Package Manager
        • Environment Modules
        • Conda Environments
      • SSH Port Forwarding
        • SSH Port Forwarding Jupyter Notebooks
      • Containerization
        • Docker
          • Docker Installation
          • Running Docker Images
          • Building Docker Images
        • Singularity
          • Differences from Docker
          • Running Images in Singularity
      • Running Nextflow / nf-core Pipelines
    • Python
      • Introduction to Python for Biologists
        • Interactive Python
        • Types
          • Strings
          • Lists
          • Tuples
          • Dictionaries
        • Control Flow
        • Loops
          • For Loops
          • While Loops
        • Control Flows and Loops
        • Storing Programs for Re-use
        • Reading and Writing Files
        • Functions
      • Biopython
        • About Biopython
        • Quick Start
          • Basic Sequence Analyses
          • SeqRecord
          • Sequence IO
          • Exploration of Entrez Databases
        • Example Projects
          • Coronavirus Exploration
          • Translating a eukaryotic FASTA file of CDS entries
        • Further Resources
      • Machine Learning with Python
        • About Machine Learning
        • Hands-On
          • Project Introduction
          • Supervised Approaches
            • The Logistic Regression Model
            • K-Nearest Neighbors
          • Unsupervised Approaches
            • K-Means Clustering
          • Further Resources
      • Data Processing with Python
        • Pandas
          • About Pandas
          • Making DataFrames
          • Inspecting DataFrames
          • Slicing DataFrames
          • Selecting from DataFrames
          • Editing DataFrames
        • Matplotlib
          • About Matplotlib
          • Basic Plotting
          • Advanced Plotting
        • Seaborn
          • About Seaborn
          • Basic Plotting
          • Visualizing Statistics
          • Visualizing Proteomics Data
          • Visualizing RNAseq Data
    • R
      • Intro to R
        • Before We Start
        • Getting to Know R
        • Variables in R
        • Functions in R
        • Data Manipulation
        • Simple Statistics in R
        • Basic Plotting in R
        • Advanced Plotting in R
        • Writing Figures to a File
        • Further Resources
    • Version Control with Git
      • About Version Control
      • Setting up Git
      • Creating a Repository
      • Tracking Changes
        • Exercises
      • Exploring History
        • Exercises
      • Ignoring Things
      • Remotes in Github
      • Collaborating
      • Conflicts
      • Open Science
      • Licensing
      • Citation
      • Hosting
      • Supplemental
Powered by GitBook

MIT Resources

  • https://accessibility.mit.edu

Massachusetts Institute of Technology

On this page

Was this helpful?

Export as PDF
  1. Mini Courses
  2. Python
  3. Machine Learning with Python
  4. Hands-On
  5. Unsupervised Approaches

K-Means Clustering

The k-means algorithm takes a bunch of unlabeled points and tries to group them into “k” number of clusters.

The “k” in k-means denotes the number of clusters you want to have in the end. If k = 5, you will have 5 clusters on the data set.

How it works?

  1. Determine K value by Elbow method and specify the number of clusters K

  2. Randomly assign each data point to a cluster

  3. Determine the cluster centroid coordinates

  4. Determine the distances of each data point to the centroids and re-assign each point to the closest cluster centroid based upon minimum distance

  5. Calculate cluster centroids again

  6. Repeat steps 4 and 5 until we reach global optima where no improvements are possible and no switching of data points from one cluster to other.

Quick Run

Import necessary Python packages

import numpy
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score
from sklearn.cluster import KMeans

Define a list containing the distance and the score of similarity in expression profile between the 2 genes

xs =      [[-53, -200.78],
          [117, -267.14],
          [57, -163.47],
          [16, -190.30],
          [11, -220.94],
          [85, -193.94],
          [16, -182.71],
          [15, -180.41],
          [-26, -181.73],
          [58, -259.87],
          [126, -414.53],
          [191, -249.57],
          [113, -265.28],
          [145, -312.99],
          [154, -213.83],
          [147, -380.85],
          [93, -291.13]]

Implementation of K-Means Clustering

model = KMeans(n_clusters = 2)
model.fit(xs)
model.labels_
colormap = numpy.array(['Red', 'Blue'])
z = plt.scatter([i[0] for i in xs], [i[1] for i in xs], c = colormap[model.labels_]

Accuracy estimates Define a list with know answer if the gene pair belongs to the same operon (1) or different operons (0)

ys =     [1,
          1,
          1,
          1,
          1,
          1,
          1,
          1,
          1,
          1,
          0,
          0,
          0,
          0,
          0,
          0,
          0]

Compare cluster labels with know answer

accuracy_score(ys,model.labels_)
Out[1]: 0.9411764705882353

Traditional Approach

Import necessary Python packages

import numpy
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score
from sklearn.cluster import KMeans

Define a list containing the distance and the score of similarity in expression profile between the 2 genes

xs =      [[-53, -200.78],
          [117, -267.14],
          [57, -163.47],
          [16, -190.30],
          [11, -220.94],
          [85, -193.94],
          [16, -182.71],
          [15, -180.41],
          [-26, -181.73],
          [58, -259.87],
          [126, -414.53],
          [191, -249.57],
          [113, -265.28],
          [145, -312.99],
          [154, -213.83],
          [147, -380.85],
          [93, -291.13]]

Find out the optimal number of clusters using the elbow method

Nc = range(1, 10)
kmeans = [KMeans(n_clusters=i) for i in Nc]
kmeans
score = [kmeans[i].fit(xs).score(xs) for i in range(len(kmeans))]
score
plt.plot(Nc,score)
plt.xlabel('Number of Clusters')
plt.ylabel('Score')
plt.title('Elbow Curve')
plt.show()

Implementation of K-Means Clustering

model = KMeans(n_clusters = 2)
model.fit(xs)
model.labels_
colormap = numpy.array(['Red', 'Blue'])
z = plt.scatter([i[0] for i in xs], [i[1] for i in xs], c = colormap[model.labels_])

Accuracy estimates Define a list with know answer if the gene pair belongs to the same operon (1) or different operons (0)

ys =     [1,
          1,
          1,
          1,
          1,
          1,
          1,
          1,
          1,
          1,
          0,
          0,
          0,
          0,
          0,
          0,
          0]

Compare cluster labels with know answer

accuracy_score(ys,model.labels_)
Out[1]: 0.9411764705882353
PreviousUnsupervised ApproachesNextFurther Resources

Last updated 1 year ago

Was this helpful?